Almost 80 million Americans suffer from hair loss due to aging, stress, medication, or genetic makeup. Hair and scalp-related diseases often go unnoticed in the beginning. Sometimes, a patient cannot differentiate between hair loss and regular hair fall. Diagnosing hair-related diseases is time-consuming as it requires professional dermatologists to perform visual and medical tests. Because of that, the overall diagnosis gets delayed, which worsens the severity of the illness. Due to the image-processing ability, neural network-based applications are used in various sectors, especially healthcare and health informatics, to predict deadly diseases like cancers and tumors. These applications assist clinicians and patients and provide an initial insight into early-stage symptoms. In this study, we used a deep learning approach that successfully predicts three main types of hair loss and scalp-related diseases: alopecia, psoriasis, and folliculitis. However, limited study in this area, unavailability of a proper dataset, and degree of variety among the images scattered over the internet made the task challenging. 150 images were obtained from various sources and then preprocessed by denoising, image equalization, enhancement, and data balancing, thereby minimizing the error rate. After feeding the processed data into the 2D convolutional neural network (CNN) model, we obtained overall training accuracy of 96.2%, with a validation accuracy of 91.1%. The precision and recall score of alopecia, psoriasis, and folliculitis are 0.895, 0.846, and 1.0, respectively. We also created a dataset of the scalp images for future prospective researchers.
translated by 谷歌翻译
Semi-supervised learning (SSL) has made significant strides in the field of remote sensing. Finding a large number of labeled datasets for SSL methods is uncommon, and manually labeling datasets is expensive and time-consuming. Furthermore, accurately identifying remote sensing satellite images is more complicated than it is for conventional images. Class-imbalanced datasets are another prevalent phenomenon, and models trained on these become biased towards the majority classes. This becomes a critical issue with an SSL model's subpar performance. We aim to address the issue of labeling unlabeled data and also solve the model bias problem due to imbalanced datasets while achieving better accuracy. To accomplish this, we create "artificial" labels and train a model to have reasonable accuracy. We iteratively redistribute the classes through resampling using a distribution alignment technique. We use a variety of class imbalanced satellite image datasets: EuroSAT, UCM, and WHU-RS19. On UCM balanced dataset, our method outperforms previous methods MSMatch and FixMatch by 1.21% and 0.6%, respectively. For imbalanced EuroSAT, our method outperforms MSMatch and FixMatch by 1.08% and 1%, respectively. Our approach significantly lessens the requirement for labeled data, consistently outperforms alternative approaches, and resolves the issue of model bias caused by class imbalance in datasets.
translated by 谷歌翻译
We present a machine-learning framework to accurately characterize morphologies of Active Galactic Nucleus (AGN) host galaxies within $z<1$. We first use PSFGAN to decouple host galaxy light from the central point source, then we invoke the Galaxy Morphology Network (GaMorNet) to estimate whether the host galaxy is disk-dominated, bulge-dominated, or indeterminate. Using optical images from five bands of the HSC Wide Survey, we build models independently in three redshift bins: low $(0<z<0.25)$, medium $(0.25<z<0.5)$, and high $(0.5<z<1.0)$. By first training on a large number of simulated galaxies, then fine-tuning using far fewer classified real galaxies, our framework predicts the actual morphology for $\sim$ $60\%-70\%$ host galaxies from test sets, with a classification precision of $\sim$ $80\%-95\%$, depending on redshift bin. Specifically, our models achieve disk precision of $96\%/82\%/79\%$ and bulge precision of $90\%/90\%/80\%$ (for the 3 redshift bins), at thresholds corresponding to indeterminate fractions of $30\%/43\%/42\%$. The classification precision of our models has a noticeable dependency on host galaxy radius and magnitude. No strong dependency is observed on contrast ratio. Comparing classifications of real AGNs, our models agree well with traditional 2D fitting with GALFIT. The PSFGAN+GaMorNet framework does not depend on the choice of fitting functions or galaxy-related input parameters, runs orders of magnitude faster than GALFIT, and is easily generalizable via transfer learning, making it an ideal tool for studying AGN host galaxy morphology in forthcoming large imaging survey.
translated by 谷歌翻译
Handwriting Recognition has been a field of great interest in the Artificial Intelligence domain. Due to its broad use cases in real life, research has been conducted widely on it. Prominent work has been done in this field focusing mainly on Latin characters. However, the domain of Arabic handwritten character recognition is still relatively unexplored. The inherent cursive nature of the Arabic characters and variations in writing styles across individuals makes the task even more challenging. We identified some probable reasons behind this and proposed a lightweight Convolutional Neural Network-based architecture for recognizing Arabic characters and digits. The proposed pipeline consists of a total of 18 layers containing four layers each for convolution, pooling, batch normalization, dropout, and finally one Global average pooling and a Dense layer. Furthermore, we thoroughly investigated the different choices of hyperparameters such as the choice of the optimizer, kernel initializer, activation function, etc. Evaluating the proposed architecture on the publicly available 'Arabic Handwritten Character Dataset (AHCD)' and 'Modified Arabic handwritten digits Database (MadBase)' datasets, the proposed model respectively achieved an accuracy of 96.93% and 99.35% which is comparable to the state-of-the-art and makes it a suitable solution for real-life end-level applications.
translated by 谷歌翻译
Large language models have recently attracted significant attention due to their impressive performance on a variety of tasks. ChatGPT developed by OpenAI is one such implementation of a large, pre-trained language model that has gained immense popularity among early adopters, where certain users go to the extent of characterizing it as a disruptive technology in many domains. Understanding such early adopters' sentiments is important because it can provide insights into the potential success or failure of the technology, as well as its strengths and weaknesses. In this paper, we conduct a mixed-method study using 10,732 tweets from early ChatGPT users. We first use topic modelling to identify the main topics and then perform an in-depth qualitative sentiment analysis of each topic. Our results show that the majority of the early adopters have expressed overwhelmingly positive sentiments related to topics such as Disruptions to software development, Entertainment and exercising creativity. Only a limited percentage of users expressed concerns about issues such as the potential for misuse of ChatGPT, especially regarding topics such as Impact on educational aspects. We discuss these findings by providing specific examples for each topic and then detail implications related to addressing these concerns for both researchers and users.
translated by 谷歌翻译
Accurate recognition of food items along with quality assessment is of paramount importance in the agricultural industry. Such automated systems can speed up the wheel of the food processing sector and save tons of manual labor. In this connection, the recent advancement of Deep learning-based architectures has introduced a wide variety of solutions offering remarkable performance in several classification tasks. In this work, we have exploited the concept of Densely Connected Convolutional Neural Networks (DenseNets) for fruit quality assessment. The feature propagation towards the deeper layers has enabled the network to tackle the vanishing gradient problems and ensured the reuse of features to learn meaningful insights. Evaluating on a dataset of 19,526 images containing six fruits having three quality grades for each, the proposed pipeline achieved a remarkable accuracy of 99.67%. The robustness of the model was further tested for fruit classification and quality assessment tasks where the model produced a similar performance, which makes it suitable for real-life applications.
translated by 谷歌翻译
作为世界上口语最广泛的语言之一,孟加拉国的使用在社交媒体世界中也在增加。讽刺是一种积极的陈述或言论,其基本的负面动机在当今的社交媒体平台中广泛使用。在过去的许多年中,英语的讽刺检测有了显着改善,但是有关孟加拉讽刺检测的情况仍然没有改变。结果,仍然很难识别孟加拉国中的讽刺,缺乏高质量的数据是主要因素。本文提出了Banglasarc,该数据集是专门为孟加拉文本数据讽刺检测的数据集。该数据集包含5112条评论/状态和从各种在线社交平台(例如Facebook,YouTube)以及一些在线博客中收集的内容。由于孟加拉语中分类评论的数据收集数量有限,因此该数据集将有助于确定讽刺的研究,认识到人们的情绪,检测到各种类型的孟加拉语表达式和其他领域。该数据集可在https://www.kaggle.com/datasets/sakibapon/banglasarc上公开获得。
translated by 谷歌翻译
由于其在非洲以外的40多个国家 /地区的迅速传播,最近的蒙基托克斯爆发已成为公共卫生问题。由于与水痘和麻疹的相似之处,蒙基托斯在早期的临床诊断是具有挑战性的。如果不容易获得验证性聚合酶链反应(PCR)测试,那么计算机辅助检测蒙基氧基病变可能对可疑病例的监视和快速鉴定有益。只要有足够的训练示例,深度学习方法在自动检测皮肤病变中有效。但是,截至目前,此类数据集尚未用于猴蛋白酶疾病。在当前的研究中,我们首先开发``Monkeypox皮肤病变数据集(MSLD)。用于增加样本量,并建立了3倍的交叉验证实验。在下一步中,采用了几种预训练的深度学习模型,即VGG-16,Resnet50和InceptionV3用于对Monkeypox和Monkeypox和Monkeypox和其他疾病。还开发了三种型号的合奏。RESNET50达到了82.96美元(\ pm4.57 \%)$的最佳总体准确性,而VGG16和整体系统的准确性达到了81.48美元(\ pm6.87 \%)$和$ 79.26(\ pm1.05 \%)$。还开发了一个原型网络应用程序作为在线蒙基蛋白筛选工具。虽然该有限数据集的初始结果是有希望的,但需要更大的人口统计学多样化的数据集来进一步增强性增强性。这些的普遍性 楷模。
translated by 谷歌翻译
手写数字识别(HDR)是光学特征识别(OCR)领域中最具挑战性的任务之一。不管语言如何,HDR都存在一些固有的挑战,这主要是由于个人跨个人的写作风格的变化,编写媒介和环境的变化,无法在反复编写任何数字等时保持相同的笔触。除此之外,特定语言数字的结构复杂性可能会导致HDR的模棱两可。多年来,研究人员开发了许多离线和在线HDR管道,其中不同的图像处理技术与传统的机器学习(ML)基于基于的和/或基于深度学习(DL)的体系结构相结合。尽管文献中存在有关HDR的广泛审查研究的证据,例如:英语,阿拉伯语,印度,法尔西,中文等,但几乎没有对孟加拉人HDR(BHDR)的调查,这缺乏对孟加拉语HDR(BHDR)的研究,而这些调查缺乏对孟加拉语HDR(BHDR)的研究。挑战,基础识别过程以及可能的未来方向。在本文中,已经分析了孟加拉语手写数字的特征和固有的歧义,以及二十年来最先进的数据集的全面见解和离线BHDR的方法。此外,还详细讨论了一些涉及BHDR的现实应用特定研究。本文还将作为对离线BHDR背后科学感兴趣的研究人员的汇编,煽动了对相关研究的新途径的探索,这可能会进一步导致在不同应用领域对孟加拉语手写数字进行更好的离线认识。
translated by 谷歌翻译
犯罪率与人口的增加率成比例地增加。最突出的方法是引入基于闭路电视(CCTV)相机的监视以解决问题。视频监控摄像机增加了一个新的维度来检测犯罪。目前正在进行自动安全摄像机监控的几项研究工作,基本目标是从视频饲料发现暴力活动。从技术方面来看,这是一个具有挑战性的问题,因为分析了一组帧,即时间维度的视频,以检测暴力可能需要仔细的机器学习模型训练,以减少错误的结果。本研究通过整合最先进的深度学习方法来重点介绍该问题,以确保用于检测暴力活动的自主监测的强大管道,例如,踢,冲压和拍打。最初,我们设计了这种特定兴趣的数据集,其中包含600个视频(每个动作200个)。稍后,我们已经利用现有的预先训练的模型架构来提取特征,后来使用深度学习网络进行分类。此外,我们在不同预先训练的架构上分类了我们的模型'准确性,以及像VGG16,Inceptionv3,Reset50,七峰和MobileNet V2的不同预先训练的架构中的混淆矩阵,其中VGG16和MobileNet V2更好。
translated by 谷歌翻译